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Abstract
A thermopower formula is derived for composites:

∑
i υi

κi/Si −κ/S
κi/Si +2κ/S = 0 (κi and κ are the

specific thermal conductivities, Si and S are the Seebeck coefficients of the phase i and the
composite, respectively, and υi is the volume fraction of the phase i ). This formula can be
applied for calculating the Seebeck coefficient (thermoelectric power) of amorphous
transition-metal–metalloid alloys, for which amorphous phase separation occurs for large
ranges of concentration. There are two contributions to Si , a scattering term and a contribution
due to electron transfer between the phases maintaining a common electrochemical potential μ.
The theory predicts discontinuities in the concentration dependence of the Seebeck coefficient
of metallic composites. It is argued that in amorphous composites these discontinuities occur
very precisely at υi = 1/3. This phenomenon can be used to characterize the crystallization
kinetics of amorphous alloys. The theory is applied to a-Cr1−x Six alloys for calculation of S
versus x . Both the calculated S(x) dependence and the discontinuities agree very well with the
experimental data, as long as x < 0.67; the deviations at x > 0.67 are interpreted to be caused
by the p–d bonds at the phase boundaries.

1. Introduction

In a previous paper [1] a thermopower formula has been
derived for alloys with phase separation (composites).
This thermopower formula (equation (30), respectively
equation (32), in [1]) is an approximation formula, which in
addition holds only for the special case of composites with
metallic phases.

The purpose of the present paper is the derivation of
a thermopower formula for composites for the general case,
where the phases can be metallic and/or semiconducting ones1.
This derivation will be based on J and JS , the electric and
entropy-flux density, respectively, while the derivation in [1]
was based on J and JQ . JQ is the heat current density. For
the one-band models, it makes little difference whether one
chooses to interpret thermoelectric phenomena on the basis of
J and JQ , or J and JS . However, for two-band or multiband
models characteristic for semiconductors, the use of J and JQ

1 In the scientific literature there also exist other thermopower formulae for
composites [36–48]. These formulae are different from the ones derived in [1]
and in the present paper, because there the influence of the electrochemical
potential and its change with temperature and concentration is generally not
considered.

leads to complications, which are not to be expected if J and
JS are used as a basis (Harman and Honig [2], p 28).

For the derivation the following assumptions are made:
(a) elastic scattering, (b) υi > 1/3 for each phase i and (c) the
phase grains are spherical without preferred orientations and
arranged in a symmetrical fashion. υi is the volume fraction of
the phase i . Assumptions (a) and (b) allow the application of
the relaxation time approximation of the Boltzmann transport
equation (BTE) to each phase of a composite, and assumption
(c) allows the application of the effective medium theory
(EMT).

Starting with the local electric and entropy-flux density
for a single phase i , Ji and JS,i , respectively, and applying
EMT, in section 2 the thermopower formula for composites
will be derived. In section 3 a guide is proposed for a
practical calculation of the transport coefficients of the phases
required for a calculation of the Seebeck coefficient of a
composite, and the influence of the electrochemical potential
on the Seebeck coefficient will be considered. In section 4
the theory will be applied for the calculation of the Seebeck
coefficient versus x for a-Cr1−x Six alloys and compared with
experimental data as well as with earlier calculations. In
section 5.1 the derived thermopower formula for composites
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will be compared with the thermopower formula derived in [1]
and the conditions for applicability are defined. In section 5.2
the calculation of the transport coefficients of the phases will
be considered for the case that assumption (b), υi > 1/3, is not
fulfilled; the consequences of this discussion can be used for
a characterization of the crystallization kinetics of amorphous
alloys, as will be discussed in section 5.3. In section 6 the
results will be summarized.

2. Thermopower formula for composites

Ji and JS,i can be written [2, 3]

Ji = σi [grad(μi/|e|)− Si gradT ], (1)

JS,i = σi Si grad(μi/|e|)− (σi S
2
i + κi/T )gradT, (2)

where T and |e| are the temperature and the elementary
charge, respectively. σi , κi , Si and μi are the specific
electrical conductivity, specific thermal conductivity, Seebeck
coefficient2 and electrochemical potential, respectively, in the
phase i .

According to the strategy underlying the EMT, we demand
continuity of the entropy-flux density and the electrochemical
potential and their gradients at the boundary face between
a single phase grain and its surrounding (effective medium),
where additionally J = Ji = 0 is to be fulfilled. Setting Ji = 0
in equation (1), and inserting into equation (2), one obtains for
the local entropy-flux density:

JS,i = − κi

Si T
grad(μi/|e|). (3)

In analogy to equation (3) we write for the total entropy-flux
density JS in the specimen

JS = − κ

ST
grad(μ/|e|), (4)

where κ , S and μ are the specific thermal conductivity,
the Seebeck coefficient and the electrochemical potential,
respectively, of the composite (see footnote 2).

Equations (3) and (4) have the same structure as
equations (18) and (20) of [1]; that is why we can apply the
same formalism as described in [1] (equations (23)–(30), (A1)–
(A8) therein), however, with other starting equations

JS = 〈JS,i 〉, (5)

gradμ = 〈gradμi 〉, (6)

where the angular brackets characterize the averages.
Equations (5) and (6) replace equations (23) and (24) of [1] and
μ (respectively μi ) takes the role of the potential. Applying
this formalism to equations (5) and (6), one obtains

∑

i

υi
κi/Si − κ/S

κi/Si + 2κ/S
= 0. (7)

2 The symbols for the Seebeck coefficient (Si and S) differ from those chosen
in [1] (αi and α), which permitted a direct comparison of the results.

Equation (7) completes the set of the fundamental formulae for
the transport coefficients of composites which are

∑

i

υi
κi − κ

κi + 2κ
= 0, (8)

∑

i

υi
σi − σ

σi + 2σ
= 0, (9)

∑

i

υi
σ 2

i RH,i − σ 2 RH

(σi + 2σ)2
= 0, (10)

derived by Odelevskii [4], Landauer [5], and Cohen and
Jortner [6]. σ and RH are the specific electrical conductivity
and the Hall coefficient of the composite, respectively. RH,i is
the Hall coefficient of the phase i .

3. Calculation of Si and κi

For calculation of the Seebeck coefficient S of a composite by
equation (7), the Si , κi and υi as well as κ must be known.

For the Seebeck coefficient of the phase i , the transport
theory (BTE) provides for one-band models [2, 3, 7]

S0
i = K2,i/K1,i − μ0

i

ei T
, (11)

where the Ks,i in equation (11) are the transport integrals:

Ks,i = − 4

3mi

∫

Esτi
∂ fi (E, T )

∂E
Ni (E) dE . (12)

fi (E, T ) is the Fermi–Dirac distribution function:

fi (E, T ) = 1

1 + e
E−μi
kB T

. (13)

E and kB are the energy and the Boltzmann constant,
respectively. Ni (E), mi , τi and μ0

i are the density of states, the
effective mass, the relaxation time and the chemical potential,
respectively, of the carriers in the phase i . ei = +|e| if the
carriers are holes and ei = −|e| if they are electrons.

The index ‘0’ in S0
i characterizes that equation (11) holds

for constant carrier density. S0
i is identical to αi as used in [1].

The carrier densities in the phases of a composite are, however,
not constant, because there is an electron transfer between the
phases to maintain a common electrochemical potential in the
composite, i.e.

μ = μi . (14)

The temperature-dependent part of this electron transfer
between the phases leads to a change of μ, dμ/dT , which
provides an additional contribution to the thermoelectric power
in the phase i :

�S = 1

|e|
dμ

dT
, (15)

in correspondence with the general definition of the Seebeck
coefficient, from the viewpoint of thermodynamics [2, 3]:

S =
[

gradμ

|e|gradT

]

J=0

. (16)
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The Seebeck coefficient of the phase i is composed of the
scattering term, S0

i , and the additional term �S due to the
temperature-dependent part of the electron transfer:

Si = S0
i +�S = S0

i + 1

|e|
dμ

dT
. (17)

(For a practical calculation of dμ/dT see section III of [1].)
κ can be calculated by equation (8). Assuming that

interactions between the various modes of heat transport can
be neglected

κi = κe,i + κne,i , (18)

where κne,i is the non-electronic contribution to κi and κe,i is
the electronic contribution. For κe,i , the transport theory (BTE)
provides for one-band models [2, 3, 7]

κe,i = K3,i − K 2
2,i/K1,i

T
. (19)

For metallic phases, κne,i can be neglected compared to
κe,i , if the carrier densities are not too small. Otherwise, the
κne,i are to be determined separately; this becomes especially
important for semiconducting phases and if the phase i does
not form a macroscopic cluster.

For composites with semiconducting phases, the S0
i

and κe,i are to be calculated according to the rules for
semiconducting solids, in correspondence with the two-band
(or multiband) model (see, e.g., Harman and Honig [2], pp 37
and 129), where additionally the condition equation (14) is to
be taken into account.

Both the BTE and the approximation of free electrons
(NFE approximation) are good descriptions for the phases of
amorphous transition-metal–metalloid alloys, as long as υi >

1/3. This point of view is justified in section IVB of [8].
For metallic phases, equations (11) and (19) are in the NFE
approximation [2, 3, 7]

S0
i = π2k2

BT (1 + ri )

3ei EF,i
, (20)

κe,i = 16π3

9

mi Li EF,i

h3
k2

BT, (21)

where EF,i is the Fermi energy in the phase i . h is Planck’s
constant. ri characterizes the scattering mechanism and
represents the energy dependence of the mean free path Li in
the phase i , according to Li ∝ Eri .

The volume fractions of the phases, υi , can be calculated
from the atomic concentrations of the composite and the
phases, x and xi , respectively. For a two-phase composite, the
υi can be determined by

υA = 1 − υB =
[

1 + NA(x − x A)

NB (xB − x)

]−1

, (22)

where NA and NB are the atomic densities in the phases A and
B , respectively.

When Si , κi , υi and κ are determined, S can be calculated
by equation (7). For a two-phase composite, equation (7) has
two solutions, S(−) and S(+), in analogy to α(−) and α(+)
applied for the two solutions of the approximation formula
derived in [1] (equation (35) therein).

4. Calculation of the Seebeck coefficient of
a-Cr1−xSix alloys

Amorphous transition-metal–metalloid alloys are, for large
ranges of concentration, composed of different amorphous
phases [12–24], each with its own short-range order, a
phenomenon called amorphous phase separation. Based on
the two-phase model [8] with the two phases a-Cr1−xA SixA

(≡phaseA) and a-Cr1−xB SixB (≡phaseB), in [1] the Seebeck
coefficient of a-Cr1−x Six has been calculated with the
approximation formula of [1] (equation (32) therein). These
calculations we have done once more, however with the
new thermopower formula, equation (7). The concentration
dependences of the calculated values of n, p, Li , σi , S0

i (=αi )
and σ , are the same as drawn in figures 4(a)–(e) of [1], where
n and p is the electron density and hole density in the phases A
(=a-Cr0.75Si0.25) and B (=a-Cr0.10Si0.90), respectively, and Li

is the mean free path of the carriers in the phase i . However,
c, the parameter characterizing the electrostatic contribution to
dμ/dT (section IVA of [1]), is different: c = 4.85 eV. c is fitted
in such a way that the discontinuity (step) in the calculated
S(−) versus x curve coincides with the discontinuity in the
experimental data occurring at x = 0.49. By change of c
only the discontinuity is shifted along the x axis, whereas the
shape of the S(−) versus x curve is almost independent of c.
This situation is the same as demonstrated in [1] (figure 4(g)
therein). As argued in [1], this discontinuity occurs only if
the composite is composed of phases with different kinds of
carriers, electrons and holes.

In figure 1 the solutions S(−) of equation (7) are drawn
versus x , where κne,i is taken as a parameter. For a-Cr0.10Si0.90

(the phase B in a-Cr1−x Six ), κne,B is assumed to be equal
to κa−Si, the specific thermal conductivity in the amorphous
semiconductor a-Si. According to experimental results by
Goldsmid et al [25], κa−Si = 26 mW cm−1 K−1, which
corresponds with experimental results by other authors [26–28]
at T = 300 K.

For a-Cr0.75Si0.25 (the phase A in a-Cr1−xSix ), experimen-
tal data for the thermal conductivity, κA, are not available and
its non-electronic contribution, κne,A, cannot be measured di-
rectly because of the simultaneous presence of the relatively
large electronic contribution, κe,A. That is why we have cal-
culated S(−) for several values of κne,A: κne,A = 26, 13 and
6 mW cm−1 K−1. The S(−) curve for κne,A = κne,B =
26 mW cm−1 K−1 (not drawn in figure 1) is very similar to
those for κne,A = κne,B = 0.

The value xB = 0.90 applied for the calculations until now
is very uncertain. Therefore, the calculations have been done
once more, but for xB = 1.00; this value corresponds to the
silicon-richest phase in c-Cr1−x Six (the solubility of Cr atoms
in c-Si is very small [29, 30]). The result of these calculations
is shown in figure 2. The discontinuity in the calculated
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Figure 1. Seebeck coefficient S(−) versus x for a-Cr1−x Six at
T = 300 K calculated by equation (7) with xA = 0.25 and
xB = 0.90. κne,i is taken as a parameter as indicated on the curves (in
units of mW cm−1 K−1). α(−) is the Seebeck coefficient calculated
by the approximation formula of [1] (figure 5 therein). The
experimental data are taken from Gladun et al [9] (diamond),
Weser [10] (open triangles) and Sonntag [11]3 (full triangles).

S(−) curve occurs also at x = 0.49, if c = 2.6 eV is chosen,
determined in the same manner as described earlier.

At present, the values of xB and κne,A in a-Cr1−x Six are
very uncertain or not known. Also it could be very useful
to measure xB and κA experimentally. A possible way for
measuring xB will be discussed in section 5.3. The knowledge
of xB and κne,A is especially important for the silicon-rich side,
while on the chromium-rich side (to the left of the discontinuity
at x = 0.49), the different S(−) curves are almost identical;
they almost do not depend on xB and κne,A, as can be seen in
figures 1 and 2.

5. Discussion

5.1. Comparison with the thermopower formula of [1]

The essential difference between equation (7) and the ther-
mopower formula derived in [1] (equation (30), respectively
equation (32) therein) is the fact that in the former the common
electrochemical potential μ occurs (via the Si , equation (17)),
while in the latter one it is the chemical potential of the phases,
μ0

i . This difference is caused by the different basis applied for

3 The experimental data are cited in [10] (Abb.3 therein).

Figure 2. Same as figure 1, however, for xB = 1.00 and
κne,B = 26 mW cm−1 K−1 (for all the curves). 26 mW cm−1 K−1 is
the experimental heat conductivity of amorphous silicon,
a-Si [25–28]. κne,A is taken as a parameter as indicated on the curves
(in units of mW cm−1 K−1). (α(−) and S(−) for κne,A = κne,B = 0
are not drawn.)

the derivation of the thermopower formula, namely J and JQ

in [1], but J and JS in the present paper. After Harman and
Honig [2], for the one-band models, it makes little difference
whether one chooses to interpret thermoelectric phenomena on
the basis of J and JQ , or J and JS . However, the use of J and
JQ in two-band or multiband solids leads to severe complica-
tions, which are not to be expected if J and JS are applied as a
basis ([2], p 28). That is why equation (7) is to be considered
as the thermopower formula which reflects correctly the phys-
ical situation, also for composites with two-band or multiband
phases.

Although in composites with only metallic phases, each
of the phases can be considered as one-band ‘solids’ (phases),
complications arise already in these kinds of composites,
because the average 〈dμ0

i /dT 〉 (equation (22) in [1]) is chosen
arbitrarily, which is to be considered as an approximation of
the real physical situation. That is why the thermopower
formula of [1] is to be considered as an approximation
formula for composites with metallic phases (one-band
phases). For composites with two-band or multiband phases
(e.g. semiconducting phases), the thermopower formula of [1]
cannot at all be applied, because it leads to insurmountable
difficulties.

The curve α(−) in figure 1 (dotted bold line) calculated
with the thermopower formula of [1] (equation (32) therein)
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can be compared directly with S(−) for κne,i = 0 (bold line).
This comparison is allowed, because the BTE formulae for
κe,i and σi are directly proportional to each other, i.e. the
result S(−) is not changed, when in equations (7) and (8),
κi and κ are replaced by σi and σ , respectively, provided that
κne,i = 0 (in correspondence with the Wiedemann–Franz rule).
As can be seen in figure 1, these two curves are similar but not
identical; the α(−) curve in figure 1 is to be considered as an
approximation of the correct solution S(−) (for κne,i = 0).

Because in equation (7) only transport coefficients and
the volume fractions occur, this thermopower formula holds
generally, provided that assumption (c) (section 1) is fulfilled
and that each of the phases can be characterized by its own
specific transport coefficients, κi and Si . Assumptions (a)
and (b) must not be fulfilled for equation (7).

5.2. The transport coefficients of the phases

The equations for the transport coefficients of the phases,
equations (20) and (21), hold only if in the phase i there
is a quasi-continuous energy band and that the scattering is
elastic, i.e. assumptions (a) and (b) (section 1) must be fulfilled.
An equivalent demand according to assumption (b) is the
fact that the phase i forms a macroscopic cluster through
the composite. With decreasing υi , the macroscopic i phase
cluster decomposes into separate phase grains; for amorphous
composites, this transition occurs very precisely at υi = 1/3.
The reasons are the following.

(1) As the grain diameters are very small (of the order of
∼1–2 nm [14, 16]), the number of grains (of the same
sort i ) must be very large to form a cluster for which a
quasi-continuous energy band is realized. Accidentally
formed agglomerates of some (for instance, 10 or 100 or
1000) neighbouring grains (with ∼1–2 nm diameter) are
not sufficient for forming a quasi-continuous energy band.

(2) During the film deposition of a composite, the atoms of
the different atom sorts arrive at the substrate equally
distributed; therefore the different phase grains (A and
B) can also be assumed to be locally equally distributed
in the amorphous composite, because the diffusion paths
during solidification are very short, which is a prerequisite
for forming an amorphous composite.
A phase is an ‘electronic phase’ determined by a solution
of the Schrödinger equation; after hitting the substrate,
the atoms move locally only so long until they can
form a phase which corresponds to a solution of the
Schrödinger equation. That is why the phase grains of
the same sort i are also locally equally distributed, as the
compositions of the different phases are very different,
i.e. the local distribution of the i phase grains is not
completely random, as, for example, assumed within the
framework of classical percolation theory. For such a
locally equally distributed arrangement of the i phase
grains in an amorphous matrix (formed by the rest of the
composite), it follows that this merging into a macroscopic
cluster through the sample occurs very precisely at a
specific concentration υi ; and this specific concentration
is υi = 1/3, as follows, for instance, from equation (9),

setting σ j = 0 but σi �= 0 ( j �= i ). (For a comparison with
classical percolation theory concerning this critical value
of υi , see also [8], section IVA therein.)

(3) A macroscopic i phase cluster is only realized, if all
the atoms in this i phase cluster are directly connected
to atoms belonging to the same phase sort i . When,
for instance, two grains of the same phase sort i are
separated by a monoatomic layer of a different(!) phase
( j ), these two i phase grains cannot be considered as
(nearly) one i phase cluster, because the overlap of the
electron wavefunctions is interrupted by this monoatomic
layer. Within an i phase grain or i phase cluster the
wavefunctions, ψi (r), overlap, but they do not overlap
between two i phase grains or i phase clusters separated
by a monoatomic layer of a different(!) phase ( j ).
If a sufficiently large number of i phase grains form
a macroscopic cluster, the overlapping wavefunctions
ψi (r) form a quasi-continuous energy band, while the
wavefunctions fall off exponentially in a very short
distance |δr| outside this macroscopic cluster. This
‘falling off’ is comparable with the decrease of the
molecular orbitals of (large) molecules at their molecular
boundaries (see, e.g., [31], pp 409 and 435, or [32]).
Because of this ‘non-overlapping’ of the ψi (r) belonging
to different phases, they do not ‘penetrate’ each other,
i.e. there are sharp boundaries between the different
(electronic) phases.

Considering the fact that the phase i does not form a
quasi-continuous energy spectrum if υi < 1/3, but a discrete
energy spectrum typical for separate grains, then there are
no unoccupied states immediately above and below μ (within
the energy range kBT ), i.e. the electrons cannot be activated
to higher energies (at the hot end of the sample) and deliver
energy (at the colder end) if υi < 1/3. Under this condition
it follows that κe,i = 0 for υi < 1/3. For Si the situation
is analogous: for υi < 1/3, S0

i = 0, i.e. at the transition
from υi > 1/3 to υi < 1/3 both κi and Si change
discontinuously. Such discontinuities are especially to be
expected in composites with metallic phases.

For a-Cr1−x Six , υB = 1/3 and υA = 1/3 are realized at
xυB=1/3 = 0.43 and xυA=1/3 = 0.67, respectively, calculated
by equation (22), with x A = 0.25, xB = 1.00, NA = 7.9 ×
1022 cm−3 and NB = 5.0 × 1022 cm−3. The atomic densities
NA and NB are taken from the crystalline phases, c-Cr3Si [33]
and c-Si [34], which are assumed to be approximately equal to
the values of the corresponding amorphous phases.

Now we have done the calculations in figure 2 (section 4)
once more, but with the difference that κe,i = S0

i = 0 is
set for x < 0.43 (corresponding to υB < 1/3) and for
x > 0.67 (corresponding to υA < 1/3); the calculation
of dμ/dT is not changed, because the Fermi–Dirac statistics
holds for υi < 1/3 as well. The result is shown in figure 3.
At x = 0.43 and x = 0.67 (corresponding to υB = 1/3 and
υA = 1/3, respectively) there are really discontinuities in the
experimental data. For small x there is an excellent agreement
between the experimental data and the calculated ones; the
calculated height of the step (discontinuity) at υB = 1/3
agrees with the experimental data. On the other side, the step

5
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Figure 3. The same as figure 2, where, however, for x < 0.43
(corresponding to υB < 1/3) and x > 0.67 (corresponding to
υA < 1/3), S0

i = 0 and κe,i = 0 is set or S0
i and κe,i are replaced by

0.03 × S0
i and 0.03 × κe,i calculated by equation (20) and

equation (21), respectively. The latter one is indicated by 3% at the
S(−) curve and the former by 0%. For details see section 5.2.

(discontinuity) at υA = 1/3 corresponds approximately to the
experimental data if κne,A ≈ 2 mW cm−1 K−1. However, for
the experimental data point at x = 0.74, there is a considerable
difference from the calculated S(−). This discrepancy we
interpret in the following way.

For amorphous transition-metal–metalloid alloys, κe,i =
S0

i = 0 for υi < 1/3 is only an approximation, because, at
the boundary faces between the different phases, there are p–d
bonds, i.e. d orbitals of the Cr atoms (of the A phase grains)
overlap with p orbitals of the boundary faces atoms on the B
phase grains, resulting in a p–d band, which is incompletely
occupied. (For a detailed discussion see section IIA of [8].)
Because of this p–d overlapping, this (incompletely occupied)
p–d band exists also if υA < 1/3: although the energy levels
of the s states in the separate A phase grains are discrete, the
electrons can be activated to higher energies (at the hot end
of the sample) and deliver energy (at the colder end) by a
transition to the p–d band. That is why κe,A �= 0 and S0

A �= 0,
also for υA < 1/3. However, the real values of κe,A and S0

A
(for υA < 1/3) are expected to be essentially smaller than as
calculated by equations (21) and (20), because the d states are
localized. On the other hand, for υB < 1/3, the p–d band is
not extended into the inside of the separate B phase grains. It
is limited to the A phase and the boundary face atoms of the B
grains, because the orbital configuration of the boundary face

atoms (B∗) is different from those of the core atoms (B0) (see
figure 1 of [8]). That is why, also for υB < 1/3, κe,B �= 0
and S0

B �= 0 must be assumed, although these values (for
υB < 1/3) are surely small compared with equations (21)
and (20), because only the states of the boundary face atoms
(B∗) are involved in the p–d band.

When non-zero values are assumed for κe,i and S0
i (for

υi < 1/3), however, still small compared with the values
calculated by equations (21) and (20), respectively, then the
S(−) curve approaches in direction to the experimental data
point at x = 0.74, whereas on the metal-rich side (υB < 1/3),
the S(−) curve is practically not changed. In figure 3, the
dotted bold line is the S(−) curve calculated for κne,i =
2 mW cm−1 K−1 and S0

i = κe,i = 0 for υi < 1/3 (indicated
by 0%). The dotted–dashed line (indicated by 3%) is the
S(−) curve, where S0

i and κe,i (for υi < 1/3) are replaced by
0.03×S0

A and 0.03×κe,i calculated by equations (20) and (21),
respectively.

At the present time, we are not yet able to calculate
precisely κe,i and S0

i for υi < 1/3. However, we believe
that the calculated S(−) curves in figure 3 reflect the general
tendency of the concentration dependence of the thermopower
at large x as well, i.e. a maximum is expected in the
concentration range 0.67 < x < xc, where xc ≈ 0.87 is the
concentration of the metal–insulator transition in a-Cr1−x Six .

On the other hand, the good agreement between the
calculated S(−) and the experimental data for x < 0.67
suggests that the assumption of elastic scattering (assumption
(a) , section 1) is actually fulfilled.

5.3. Crystallization kinetics of amorphous metallic alloys

The discussion in section 5.2 suggests that the Seebeck
coefficient shows discontinuities at specific concentrations
if the alloy is composed of different phases. This
is a characteristic feature distinguishing composites from
homogeneous alloys. By measurement of S versus x , these
discontinuities can be determined experimentally. Thus x A and
xB can be determined experimentally very precisely.

This result can be applied for characterization of
the crystallization kinetics of amorphous transition-metal–
metalloid alloys, easy to produce as thin films by co-sputtering
or co-evaporation as described by Mangin et al [18] for a-
Au1−xSix . Mangin et al [18] have found that a-Au1−xSix , in
the Si-rich regime, is composed of two amorphous phases, a-
Au0.75Si0.25 and a-Si, which we call phase A and phase B ,
respectively, i.e. x A = 0.25 and xB = 1.00. The phase A
is identical with the a-μ phase used by Mangin et al [18]. With
these x A and xB , it follows that the discontinuities at υB = 1/3
and υA = 1/3 are to be expected at xυB=1/3 = 0.47 and
xυA=1/3 = 0.73, calculated by equation (22) with the atomic
densities NA = 5.8 × 1022 cm−3 and NB = 5.0 × 1022 cm−3

taken from [18] (table I therein).
Considering the crystallization mechanism, in [18] it is

supposed that, at increasing temperatures, the a-μ and a-
Si phases crystallize separately into metastable c-μ and c-Si
phases without long-range diffusion (diffusionless transforma-
tion) before reaching the equilibrium state characterized by a
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mixture of the crystalline phases c-Au and c-Si [30, 35]. Ap-
plying the result of section 5.2, this supposition by Mangin et al
[18] can now be checked by measurement of S versus x at dif-
ferent temperatures. If this supposition is true, the disconti-
nuities in S will be shifted to lower x after crystallization of
a-Au1−x Six ; as long as the a-μ and a-Si phases transform dif-
fusionless to c-μ and c-Si, the discontinuities are also expected
at x = 0.47 and 0.73, if the atomic densities do not essen-
tially change, while they are expected to be shifted to smaller
x in the equilibrium state consisting of the phases c-Au and
c-Si corresponding to x A = 0 and xB = 1.00. In this case,
equation (22) provides xυB=1/3 = 0.30 and xυA=1/3 = 0.63 for
the discontinuities, when additionally, NA = 5.9 × 1022 cm−3,
the atomic density of c-Au, is considered. This example, a-
Au1−xSix , shows that measurement of S versus x at differ-
ent temperatures can provide additional information about the
crystallization kinetics. Discontinuities are also expected in the
concentration dependence of the heat conductivity. Measure-
ment of κ at thin films is, however, more expensive and more
difficult than measurement of S versus x .

6. Summary

The thermopower formula for composites derived in the
present paper is

∑

i

υi
κi/Si − κ/S

κi/Si + 2κ/S
= 0. (23)

While the thermopower formula derived in [1] is only an
approximation formula for composites with metallic phases,
equation (23) holds generally, also for composites containing
metallic and/or semiconducting phases. A prerequisite for the
applicability of equation (23) is the fact that each of the phases
can be characterized by its own specific transport coefficients,
κi and Si , and that the phase grains are spherical without
preferred orientations and arranged in a symmetrical fashion.

There are two contributions to Si , a scattering term and
a contribution due to electron transfer between the phases
maintaining a common electrochemical potential.

In composites with metallic phases, Si and κi change
discontinuously at the transition from a macroscopic phase
cluster to separate phase grains leading to discontinuities
in the concentration dependence of the Seebeck coefficient.
It is argued that in amorphous composites this transition
occurs very precisely at υi = 1/3. Discontinuities in the
concentration dependence of S (and κ) is a characteristic
feature for metallic alloys distinguishing composites from
homogeneous alloys. It can be applied to characterize the
crystallization kinetics of amorphous metallic composites.
By experimental determination of these discontinuities, the
average compositions of the phases can be determined.

Equation (23) and the theory described can be applied for
calculating the Seebeck coefficient of amorphous transition-
metal–metalloid alloys, because in this class of alloys
amorphous phase separation is realized for large ranges of
concentration. The theory is applied to a-Cr1−xSix alloys
for calculating the Seebeck coefficient versus x . Both the

calculated S(x) dependence and the discontinuities agree very
well with the experimental data, as long as x < 0.67; the
deviations at x > 0.67 are interpreted to be caused by neglect
of the p–d bonds at the phase boundaries. The good agreement
between the calculated S(−) and the experimental data for
x < 0.67 supports the assumption of elastic scattering in the
metallic regime of a-Cr1−xSix alloys.
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