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Applying effective medium theory and the Boltzmann transport equation, a formula is derived for calcula-
tion of the Seebeck coefficient � �thermoelectric power� of alloys with phase separation �composite� under
especial consideration of the electrochemical potential � and its change with temperature T , d� /dT. d� /dT is
essentially determined by the electronic structure, carrier densities, and electron-electron-interaction in the
phases. For metal-metal composites and metal-insulator composites, � can be calculated approximately by
�i�i��i /�i−� /�� / ��i /�i+2� /���0 and ���A, respectively, where � is the specific electrical conductivity of
the composite. �i, �i, and �i are the specific electrical conductivity, the Seebeck coefficient, and the volume
fraction, respectively, of the phase i �i=A ,B�. Both �i and �i depend on concentration caused by the condition
of a common electrochemical potential in the composite. The � formulas derived can also be applied to
composites with strong scattering. � vs x is calculated for a-Cr1−xSix alloys and compared with experimental
data.
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I. INTRODUCTION

The purpose of the present paper is the derivation of an
equation for the thermoelectric power �Seebeck coefficient�
in alloys with phase separation �composites�. In the scientific
literature there exist already formulas for the Seebeck coef-
ficient for composites,1–13 mostly derived applying effective
medium theory �EMT�, where, however, the electrochemical
potential and its change with temperature and concentration
have generally not been considered.

The basis for the present paper is the alternative concept
developed in the first and second parts of the present paper
series �called paper I �Ref. 14� and paper II �Ref. 15� in the
following�. Essential elements of this alternative concept are
the conclusions (i)–(iii) �summarized in paper II, Sec. I
therein� and the alternative interpretation of the Ioffe-Regel
criterion �described in paper II, Sec. IV B therein�. This al-
ternative concept includes the fact that the scattering within a
phase is elastic and the concepts of Fermi surface and effec-
tive mass can be applied to each of the phases, even for the
case of strong scattering, as long as �i�1/3 �spherical phase
grains� and

kF,iLi � c*, �1�

with c*=1/4. Li, kF,i, and �i are the �elastic� mean free path,
the wave number at the Fermi surface, and the volume frac-
tion, respectively, of the phase i. Under these conditions the
relaxation time approximation of the Boltzmann transport
equation16–23 �BTE� can be applied to each of the phases of a
composite, where additionally the boundary condition of a
common electrochemical potential � in the composite is to
be taken into account.

Starting with the kinetic transport equations �the BTE’s�
for a single phase, in Sec. II A the formulas for the local
electric and heat current densities in the phases will be writ-
ten down, which are the basis for the EMT equation for � to
be derived in Sec. II B.

Under especial consideration of the electrochemical po-
tential � and its change with temperature T , d� /dT, in Sec.
III this EMT equation will be applied for the calculation of
���B� for important special cases as metal-metal composites,
metal-insulator composites, and metal-semiconductor com-
posites. Section IV A is concerned with the contribution of
the electron-electron interaction to d� /dT, and the result will
be applied in Sec. IV B for calculation of � vs x for a-
Cr1−xSix alloys. In Sec. V the results are summarized.

In Appendix A details of the derivation for the EMT equa-
tion for � are considered, and in Appendix B the connection
between Eq. �1� and the metal-insulator transition in disor-
dered alloys is considered.

II. TRANSPORT THEORY FOR ALLOYS WITH PHASE
SEPARATION

A. Kinetic transport equations

Before reading Sec. II A it is helpful to read Sec. III A of
paper II.

Let us consider a composite consisting of the phases i
=A ,B in a symmetrical fashion regarding the average geo-
metric form of the phase grains and without preferred orien-
tations. Let us assume that each phase i can be characterized
by a set of transport coefficients �i, �i, and �e,i, which are
the specific electrical conductivity, the Seebeck coefficient,
and the electronic contribution to the specific thermal con-
ductivity, respectively, in the phase i. The corresponding
transport coefficients of the composite, �, �, and �e, are to be
calculated, if the �i, �i, and �e,i are known. The discussion
will be restricted to small and constant electric field E, small
temperature gradients, and zero magnetic field.

Applying the kinetic transport equations for electrons in
homogeneous materials16–23 to each of the phases separately,
the local electric current density Ji, the local heat current
density JQ,i, and �i, �i, and �e,i can be written

Ji = ei
2K1,iEi + �e�K1,iT grad

�i
0

T
+ �e�K2,i

grad T

T
, �2�
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JQ,i = − �e�K2,iEi − K2,iT grad
�i

0

T
− K3,i

grad T

T
, �3�

�i = ei
2K1,i, �4�

�i =
K2,i/K1,i − �i

0

eiT
, �5�

�e,i =
K3,i − K2,i

2 /K1,i

T
, �6�

where Kr,i are the transport integrals defined by

Kr,i = −
4

3mi
� Er�i

� f i
0�E,T�
�E

Ni�E�dE . �7�

f i
0�E ,T� is the Fermi-Dirac distribution function,

f i
0�E,T� =

1

1 +
E − �i

0

kBT

, �8�

with �i
0, the chemical potential in the phase i,

�i
0 = EF,i −

	2kB
2T2

6

d

dE
�ln Ni�E��E=EF,i

= EF,i −
	2kB

2T2

12EF,i

�9�

�lowest order in powers of kBT /EF,i�. The second equation in
Eq. �9� corresponds to nearly free electrons �NFE approxi-
mation�. kB is the Boltzmann constant, T the temperature,
and E the energy. �ei�= �e� is the elementary charge, Ei the
electric field, Ni�E� the density of states, mi the effective
mass, �i the relaxation time of the carriers, and EF,i the Fermi
energy in the phase i.

We introduce the “extended electrochemical potential”24

�i in the phase i defined by

�i = EC,i + �i
0 − �e�
i, �10�

for the case shown in Fig. 1�a�. −
i is the electrostatic po-
tential, −�ei�
i the electrostatic potential energy16,19 in the
phase i. For the cases shown in Figs. 1�b� and 1�c�, Eq. �10�
holds also for the phase A, whereas for the phase B in Fig.
1�c�,

�B = EV,B − �B
0 − �e�
B �11�

holds. EC,i and EV,i characterize the band edges of the con-
duction band and valence band, respectively, in the phase i;
see Fig. 1.

Equations �2� and �3� are a coupled equation system, i.e.,
coupled by the additional boundary condition

�A = �B = � , �12�

because in the composite there is a common extended elec-
trochemical potential � or, shortly, electrochemical potential
of the composite. The condition �12� can be realized by an
electron redistribution between the phases A and B, which
generally depends on concentration, temperature, and pres-

sure �phase transitions in the phases are not considered�.
For determination of the transport coefficients of a com-

posite, we need two physical connections �functions�, first,

� = ���i,�i� �13�

and, second,

�i = �i��i� , �14�

and corresponding functions for the other transport coeffi-
cients ��=���i ,�i� ,�i=�i��i� , …� as well. The first func-
tion, Eq. �13�, will be derived in Sec. II B and applied in
Secs. III B–III D to the special cases of composites shown in
Figs. 1�a�–1�c�. Additional consideration of Eq. �14� allows
the calculation of ���i� �or ��x�� for real composites as a-
Cr1−xSix alloys, which is the subject of Sec. IV. Before de-
riving the function �13�, Eqs. �2� and �3� can be simplified:
Replacing Ei by Ei=−grad 
i and introducing �i, �i, and �e,i,
Eqs. �4�–�6�, into Eqs. �2� and �3�, we get25

Ji = − �igrad 
i − �i	�i −
1

�e�
d�i

0

dT

grad T , �15�

FIG. 1. Schematic band model for metal-metal composites �a�,
metal-semiconductor composites �b�, �c�, and semiconductor-
semiconductor composites �d�: density of states NA�E� and NB�E� in
dependence on energy E in the two phases A and B.
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JQ,i = − �i	�iT −
�i

0

�e�

grad 
i

− ��e,i + �i	�iT −
�i

0

�e�

	�i −

1

�e�
d�i

0

dT

�grad T .

�16�

Measurement of the thermopower takes place at J=0,
where J is the total electrical current density. As long as the
phase i forms an infinite cluster through the whole specimen
��i�1/3, spherical phase grains�, Ji=0 can be assumed as
well, and it follows, from Eq. �15�,

grad T = −
grad 
i

�i −
1

�e�
d�i

0

dT

�17�

and, introduced in Eq. �16�,

JQ,i = Zigrad 
i, �18�

with

Zi =
�e,i

�i −
1

�e�
d�i

0

dT

. �19�

Equations �17�–�19� are valid also for �i�1/3, because, in
this case, the other phase serves to show the fact that electric
current does not flow through the phase i if the total electri-
cal current J is zero—i.e., Ji=0 for the complete concentra-
tion range 0��i�1, if J=0.

Equation �18� is the transport equation which describes
the local heat current densities in the phases under the con-
ditions realized at thermopower measurements and is the ba-
sis for the derivation of the function �13�. Equations �18� and
�19� and Eq. �12� suggest the fact that � depends not only on
�i and �i, as stated in Eq. �13�, but additionally on �e,i, �i

0,
and �—i.e., �=���i ,�e,i ,�i

0 ,� ,�i�.

B. EMT equation for �

Before reading Sec. II B it is helpful to read Sec. IV A of
paper II.

The strategy underlying the EMT is the following: a
single-phase grain of the phase i is considered to be com-
pletely embedded in an effective medium consisting of the
two phases randomly arranged and characterized by the total
transport coefficients. At the boundary face between this
single-phase grain and the surrounding effective medium
continuity of the current densities and potentials and their
gradients are to be saved, where in our case considered the
additional condition J=Ji=0 is to be fulfilled.

In analogy to Eqs. �18� and �19� we write, for the elec-
tronic contribution to the total heat current density JQ in the
specimen,

JQ = Z grad 
 , �20�

with

Z =
�e

� −
1

�e�

 d�i

0

dT
� , �21�

where �e, �, and Z represent the transport parameters of the
composite. The angular brackets characterize an average.
�d�i

0 /dT� can be calculated by


 d�i
0

dT
� = �

i

�i

d�i
0

dT
. �22�

Now we follow the basic idea of Webman et al.2 and
demand that the total heat current density be equal to the
average of the local heat current density,

JQ = �JQ,i� , �23�

and the same for the potential

grad 
 = �grad 
i� . �24�

Let us assume a spherical inclusion of the phase i with
radius r0, embedded in an uniform medium with the transport
parameter Z given by Eq. �21� and that for the enclosed
phase i the local transport equation �18� holds. With Eqs.
�18�–�24� we get

JQ = Z�grad 
i� = �Zigrad 
i� . �25�

The local potential 
i obeys the Laplace equation

�
i = 0, �26�

where the boundary conditions


 = 
i, �27�

JQ
n = JQ,i

n �28�

at r=r0 are to be fulfilled, which is equivalent to

Z gradr
 = Zigradr
i �29�

at r=r0. gradr is the gradient into the radial direction. JQ,i
n and

JQ
n are the normal components of the heat current density in

the sphere i and the surrounding effective medium, respec-
tively. Solving this boundary value problem we get �see Ap-
pendix A�

�
i

�i
Zi − Z

Zi + 2Z
= 0, �30�

�
i

�i = 1. �31�

In the case of elastic scattering the Wiedemann-Franz rule
holds true and �e,i and �e in Zi and Z can be substituted by �i
and �, respectively, leading to

�
i

�i
zi − z

zi + 2z
= 0 �32�

with
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zi =
�i

�i −
1

�e�
d�i

0

dT

, �33�

z =
�

� −
1

�e�

 d�i

0

dT
� , �34�

if the phases in the composite are metallic phases or degen-
erated semiconducting phases. Equation �32�, resolved for �,
provides

��±� =
�

z�±�
+

1

�e�
 d�i
0

dT
� , �35�

z�±� =
1

4
�zA�3�A − 1� + zB�3�B − 1�

± ��zA�3�A − 1� + zB�3�B − 1��2 + 8zAzB� . �36�

��±� in Eq. �35� stand for the two solutions, ��+� and ��−�
corresponding to z�+� and z�−� in Eq. �36�.

Equations �19�, �21�, �33�, and �34� hold also for the case
that the carriers are holes corresponding to the phase B in
Fig. 1�c�. This follows from the fact that �B

0 is measured into
the negative direction on the energy scale �Eq. �11��, whereas
�A

0 is measured into the positive direction on the energy scale
�Eq. �10��.

With Eq. �32� and the EMT formula for �,26

�
i

�i
�i − �

�i + 2�
= 0, �37�

we have now the possibility to calculate � and �, if �i, �i,
and d�i

0 /dT are known.

III. APPLICATION OF EQ. (32)

A. General considerations

Before reading Sec. III it is helpful to read Sec. IV B of
paper II.

Electron redistribution �electron transfer� to the phase
with the deeper average potential can lead to the fact that a
constituent, which alone �i.e., not yet alloyed with another
constituent� would be a semiconductor, becomes a metallic
phase if it is composed with another constituent forming a
composite. Such a situation is realized in a-N1−xMx and
many27 a-T1−xMx alloys, Fig. 1�c� �see paper II, Secs. II A,
III B, and III C therein�. Figure 1�b� represents a situation
realized in S1−xMx alloys and cermets28–30 �see paper II, Secs.
II B and III D therein; N and T stand for a transition metal
with completely and incompletely occupied d band, respec-
tively, M for a metalloid element such as Si or Ge, and S for
a simple metal such as Al, Ga, In, …�. Examples for Fig. 1�a�
are alloys between metallic elements with miscibility gap�s�
in the phase diagram �Au1−xNix , Al1−xCux,… �Ref. 31��. An
example for Fig. 1�d� is C1−xSix with phases C, CSi, and Si.31

We are looking for analytical expressions for d�i
0 /dT with

T and n as variables,

d�i
0

dT
=

��i
0

�T
+

��i
0

�n

dn

dT
, �38�

where n is the electron density in the phase A. dn /dT is
determined by the boundary condition �12�,

d�i

dT
=

d�

dT
=

��A

�T
+

��A

�n

dn

dT
=

��B

�T
+

��B

�n

dn

dT
, �39�

leading to

dn

dT
= −

��A

�T
−

��B

�T

��A

�n
−

��B

�n

. �40�

For calculation of the terms ��i
0 /�T and ��i

0 /�n in Eq.
�38� and ��i /�T and ��i /�n in Eq. �40�, the position of � in
relation to the band structures in the phases and the band
structures themselves must be known. For simplicity, in the
following the NFE approximation will be applied in order to
discuss the basic connection between structure and electronic
transport properties. Additional assumptions are that the po-
sitions of the band edges �EC,i , EV,i; see Fig. 1� are fixed on
the energy scale and the electron redistribution to or away
from the d band �in alloys containing transition metals� does
not change with a changing temperature, corresponding to
the assumption of a constant sum of electrons.

Now, we study the special cases of Figs. 1�a�–1�c�, where
at least one of the phases is metallic �or degenerated�; those
of Fig. 1�d� will be considered in a separate paper.

B. Special case: Metal-metal composites, Fig. 1(a)

With the assumption of a constant sum of electrons, the
electron transfer between the phases can be described by

dn = − 
�dnB, �41�

where nB is the electron density32 in phase B and


� = �B/�A. �42�

Using Eqs. �10� and �41�, Eq. �40� can be written as

dn

dT
= −

��A
0

�T
−

��B
0

�T

��A
0

�n
+

1


�

��B
0

�nB
− 2�e�

�
A

�n

, �43�

where, additionally, �
i /�T=0 and

1


�

�
B

�nB
=

�
A

�n
�44�

are applied. ��i
0 /�T and ��i

0 /�ni can be calculated by

��i
0

�T
= −

	2kB
2T

6EF,i
, �45�
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��i
0

�ni
=

2

3

EF,i

ni
�46�

�NFE approximation� following from Eq. �9� and

EF,i =
h2

8mi
	 3

	

2/3

ni
2/3, �47�

with nA=n.32 h is Planck’s constant. Now, d�i
0 /dT, Eq. �38�,

can be calculated by Eqs. �43� and �45�–�47� if the term
�
A /�n can be neglected �the term �
A /�n will be consid-
ered in Sec. IV A�.

�i and �i can be calculated by Eqs. �4� and �5� solving the
transport integrals, Eq. �7�, which provide, for �i�1/3,

K1,i =
16	

3

miLi

h3 �i
0�1 + ri�1 + ri�

	2

6
	 kBT

�i
0 
2� , �48�

K2,i =
16	

3

miLi

h3 �i
02�1 + �1 + ri��2 + ri�

	2

6
	 kBT

�i
0 
2�

�49�

�lowest order in the powers of kBT /�i
0�, where

�i = Li	 mi

2E

1/2

�50�

is applied. ri characterizes the scattering mechanism and rep-
resents the energy dependence of Li according to

Li = L0Eri �51�

�near �i�; i.e., one scattering process is assumed to dominate
and it can be characterized by the energy dependence given
by Eq. �51�.16–19,34

With Eqs. �48�–�51� and Eqs. �4� and �5� it follows that35

�i = 2		

3

1/3e2

h
Lini

2/3, �52�

�i =
	2kB

2T�1 + ri�
3eiEF,i

. �53�

Let us consider a hypothetical metal-metal composite with
n=1023 cm−3 and nB=1022 cm−3, which provide, at T
=300 K, �A=4238 �−1 cm−1, �A=−2.8 �V/K, �B=913
�−1 cm−1, and �B=−13.0 �V/K if Eqs. �47�, �52�, and �53�
�Ref. 33� are applied with Li�di�0.25 nm �strong scatter-
ing; see paper II, Sec. IV B therein�, mi /m0=1, and ri=2
�Conwell-Weisskopf scattering16–18�. The ���B� curve calcu-
lated by Eq. �32� corresponding to Eq. �35� is drawn in Fig.
2 �solid line�, where � is calculated by Eq. �37�, �d�i

0 /dT� by
Eq. �22�, and d�i

0 /dT by Eq. �38� �with Eqs. �43� and �45�–
�47� and �
A /�n=0�. Only the solution ��−� of Eq. �35� is
drawn, because it agrees with �A and �B for �B=0 and �B
=1, respectively, whereas ��+� does not. The second ���B�
curve in Fig. 2 �dotted line� is calculated by

�
i

�i
�i/�i − �/�

�i/�i + 2�/�
� 0, �54�

following from Eq. �32� if d�i
0 /dT=0 is set. For metal-metal

composites �with eA=eB�, Eq. �54� can be a relatively good
approximation for Eq. �32� if the difference between n and
nB is not very large and if the term �
A /�n can be neglected.

C. Special case: Metal-insulator composites, Fig. 1(b)

For metal-insulator mixtures,

NA��� � NB��� �55�

holds, where A characterizes the metallic phase. Because of
Eq. �55�, the change of electron transfer by temperature can
be neglected—i.e., �n /�T�0—and Eq. �38� simplifies to

d�A
0

dT
�

��A
0

�T
�

��A

�T
�

��B

�T
�

d�B

dT
, �56�

and d�B
0 /dT in Eq. �22� can be replaced by d�B /dT, leading

to

FIG. 2. � vs �B calculated by Eq. �32� for a hypothetical metal-
metal composite with �A=−2.8 �V/K, �A=4238 �−1 cm−1, �B

=−13.0 �V/K, and �B=913 �−1 cm−1 corresponding to n
=1023 cm−3 and nB=1022 cm−3 �NFE approximation �Ref. 33� and
�
A /�n=0, solid line�. The dotted line is calculated by the approxi-
mation formula �54�.
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 d�i
0

dT
� �

d�A
0

dT
. �57�

With Eqs. �32�–�34�, �56�, and �57� and �B=0 it follows that

� −
1

�e�
d�A

0

dT

�A −
1

�e�
d�A

0

dT

�
2�/�A

3�A − 1
�58�

and, with Eq. �37�,

� � �A. �59�

The EMT formulas applied for the derivation of Eq. �59�
hold for the symmetrical case, where both the A and B phase
form spherical grains. However, in real S1−xMx alloys and
cermets, especially in the metallic range, the phases are not
arranged in a symmetrical fashion �modified physical model;
see paper II, Sec. III D therein�. Nevertheless, Eq. �59� is
assumed to hold for this asymmetric case as well, because
the effect of the different geometric forms of the two phases
is the same for Eqs. �32� and �37�.

D. Special case: Metal-semiconductor composites (� cutting
the valence band below the energy gap), Fig. 1(c)

With Eqs. �10�, �40�, �41�, and �44� for phase A and Eq.
�11� for phase B, as well as

dp = − dnB, �60�

where p is the hole density in the valence band �VB�, it
follows that

dn

dT
= −

��A
0

�T
+

��B
0

�T

��A
0

�n
+

1


�

��B
0

�p
− 2�e�

�
A

�n

. �61�

As � lies in the VB �Fig. 1�c��, the electron system in phase
B is to be considered as degenerated and Eqs. �48�–�51� hold
for phase B as well, leading to

�B = 2		

3

1/3e2

h
LBp2/3, �62�

��B
0

�p
=

2

3

EF,B

p
, �63�

EF,B =
h2

8mB
	 3

	

2/3

p2/3 �64�

�NFE approximation�, where �B is given by Eq. �53� with
eB= �e� and ��B

0 /�T by Eq. �45� with i=B. The corresponding
equations for phase A are given by Eqs. �45�–�47�, �52�, and
�53� with i=A. d�i

0 /dT can now be calculated by Eqs. �38�
and �61� with Eqs. �45�–�47� �phase A� and Eqs. �45�, �63�,
and �64� �phase B� if the term �
A /�n can be neglected and
�d�i

0 /dT� by Eq. �22�.

Let us consider a hypothetical composite with n
=1022 cm−3 and p=2�1022 cm−3, which provide, at T
=300 K, �A=913 �−1 cm−1, �A=−13.0 �V/K, �B=1357
�−1 cm−1, and �B= +1.75 �V/K, if Eqs. �47�, �52�, and �53�
for phase A and Eqs. �53�, �62�, and �64� for phase B are
applied33 with Li�di�0.25 nm, mA /m0=1, mB /m0=0.2,
and ri=2. In Fig. 3, � vs �B is drawn calculated by Eq. �32�
corresponding to Eq. �35�, where � is calculated by Eq. �37�,
�d�i

0 /dT� by Eq. �22�, d�i
0 /dT by Eq. �38� with Eq. �61�

�and Eqs. �45�–�47� for phase A, Eqs. �45�, �63�, and �64� for
phase B�, and �
A /�n=0. For �B�0.45, ��−� is a physically
reasonable solution, whereas for �B�0.45, ��+�, because
��−� agrees with �A for �B=0, but not for �B=1, whereas
��+� agrees with �B for �B=1, but not for �B=0.

In the hypothetical examples, Figs. 2 and 3, the change of
ni with T calculated by Eqs. �43� and �61� is very small and
practically does not influence ni, �i, and �i.

33

IV. DISCUSSION

A. Electron-electron interaction

In the model calculations of Sec. III, ni and the transport
coefficients �i and �i were still considered to be independent
of concentration. However, in a real composite there is an
electron redistribution between the phases, which depends on
the concentration. It was one of the results of paper I that in

FIG. 3. � vs �B calculated by Eq. �32� for a hypothetical com-
posite with electrons and holes in phases A and B, respectively,
where �A=−13.0 �V/K, �A=913 �−1 cm−1, �B= +1.75 �V/K,
and �B=1357 �−1 cm−1 corresponding to n=1022 cm−3 and p=2
�1022 cm−3 �NFE approximation �Ref. 33� and �
A /�n=0�.
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amorphous transition-metal–metalloid alloys this electron re-
distribution can be described by

− dn = ��nd
�, �65�

n�
�� = n�0�exp�− ��
�� , �66�

with �� as a constant for a given composite.36 n�0�=nA�0� is
the electron density in the A phase at 
�=0��B=0�. Because
of this electron redistribution �electron transfer�, �i, �i, and
�e,i depend on �B �or 
�� as well.

Electron transfer to the phase with the deeper potential
�phase B� leads to an increase of the electrostatic potential 
B
corresponding to an increase of the electron-electron interac-
tion in the phase B. The additional energy contribution �e�
B
could be calculated, on principle, by solution of the Poisson
equation,20,21,37 which, however, does not appear to be prom-
ising because of the special boundary conditions: high den-
sity of phase boundaries, smallness of the phase grains
�� nm�, and considerable amounts of structure faults and
foreign atoms solved in the phases which are considered to
be part of a complex energy balance realized during solidi-
fication of the alloy. And the electron redistribution described
by Eq. �66�, as well as the microscopical and electronic
structure itself, is part and the result of this complex energy
balance.

As argued in paper I, for a given composite, �� is deter-
mined by the average potential difference between the phases
A and B , �V, expressed by ��=����V�. There is an essential
difference between the electron transfer described by Eq.
�66� and the electron transfer by change of temperature,
dn /dT, Eq. �40�: While Eq. �66� is the result of a complex
energy balance as described, dn /dT is determined under con-
ditions where the microscopical and electronic structure is
given �constant�, and we assume that an additional �small�
change of the electron distribution �between the phases� due
to temperature change leads to a �small� change of �V and,
therefore, to a �small� change of �� as well, because ��

=����V�. With this assumption for the change of �V due to
additional �small� electron transfer to the B phase it follows
that

���V�
�n

= −
1


�n„���/���V�…
�67�

if Eq. �66� is used. For the simplest assumption that �� de-
pends linearly on �V corresponding to

�� =
1

c
�V , �68�

with c=constant, it follows that

���V�
�n

= −
�V

��
�n
= −

c


�n
. �69�

Equation �69� corresponds with the term �e��
A /�n in Eq.
�61�, and we get

�e�
�
A

�n
=

c


�n
. �70�

B. Calculation of �„x… for a-Cr1−xSix alloys

Although the scattering is strong, the NFE approximation
�especially the formulas of Sec. III� can be applied to a-
Cr1−xSix alloys, as long as �B �or 
�� is not too small. Justi-
fication is given in paper II �Sec. IV B therein�.

For the calculations the same physical parameters are ap-
plied as in paper II �Sec. III C therein�: NA=7.9
�1022 cm−3, NB=5.0�1022 cm−3, dA=0.250 nm, dB
=0.234 nm, DA=1.7 nm, ��=0.5, xA=0.25, xB=0.90, ZCr
=0.5, and ZSi=4, where Ni, di, Di, and xi are the atomic
densities, the atomic distances, the average diameters of the
phase grains, and the Si-atomic concentrations, respectively,
in phase i. ZCr and ZSi are the valences of Cr and Si, respec-
tively, which are assumed to be independent of concentra-
tion. Additionally, mA /m0=1 and mB /m0=0.2, ri=2
�Conwell-Weisskopf scattering16–18� and DB=1 nm are set.

We calculate the concentration dependence of n by Eq.
�66�, where n�0�=10.8�1022 cm−3 calculated by

n�0� = NA��1 − xA�ZCr + xAZSi� . �71�

In Fig. 4�a�, the calculated n is drawn versus �B. For calcu-
lation of p��B� we apply the physical model proposed in pa-
per II �Secs. III B and III C therein�, where

p = p0 − nB�0� − �n − ploc, �72�

nB�0� = NB��1 − xB�ZCr + xBZSi� , �73�

�n��B� =
n�0� − n��B�


�

, �74�

p0 = 4NBxB	1 +
XB*

XB

 . �75�

XB* is the atomic fraction of the phase boundary face atoms
in the B phase. Xi are the atomic fractions of the phases
connected with the volume fractions by

XB

XA
=

NB

NA

�B

�A
. �76�

n�0��=nA�0�� and nB�0� are the electron densities in phases A
and B at x=xA and x=xB corresponding to �B=0 and �A=0,
respectively,32 where x and �i are connected by

x =
xANA�A + xBNB�B

NA�A + NB�B
, �77�

with �B=1−�A, Eq. �31�.
For ploc, representing the loss of density of states in the

VB due to structure defects, ploc� p is assumed. Assuming
spherical phase grains and NB to be uniform in the whole B
phase, then

XB*/XB = �B*/�B, �78�

with
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�B*

�B
= �1 − 	1 −

2dB

DB

3� ��B � 1/3� �79�

and

�B*

�B
=

1


�
�	1 +

2dB

DA

3

− 1� ��B � �B,k� , �80�

where �B,k=0.839 calculated by

�B,k = 1 −
1

3
	1 +

2dB

DA

−3

�81�

�for details see paper II, Sec. II A therein�. In the concentra-
tion range of 1/3��B��B,k , XB* /XB is linearly interpolated
�relating to XB�. The concentration dependence of p vs �B
calculated by Eqs. �72�–�81� is drawn in Fig. 4�a� as well.

With n�0� calculated earlier and the experimental value
for ��0�=��x=0.25�=7000 �−1 cm−1 �taken from Ref. 38�,
LA�0�=0.39 nm calculated by

LA�0� =
1

2
	 3

	

1/3 h

e2

��0�
n�0�2/3 �82�

following from Eq. �52�. LA��B�, drawn in Fig. 4�b�, is cal-
culated by

LA��B� = LA�0�	n��B�
n�0� 


2rA/3

�for LA � LA,min�; �83�

otherwise, LA=LA,min, where

Li,min =
4

	
di �84�

�Ref. 16, p. 348�. �Equation �83� follows from Eqs. �47�,
�51�, and �52�.� For the holes in the B phase LB��B�=LB,min,
Eq. �84�, is assumed for the complete concentration range.

With the calculated n��B� and p��B�, now �A��B� is calcu-
lated by Eq. �52� and �B��B� by Eq. �62�, �i��B� by Eq. �53�
with Eq. �47� �phase A� and Eq. �64� �phase B�, � and � by
Eqs. �32� and �37�, d�i

0 /dT by Eqs. �38� and �61� with Eqs.
�45�–�47� �phase A� and Eqs. �45�, �63�, and �64� �phase B�,
�d�i

0 /dT� by Eq. �22�, and �
A /�n by Eq. �70�, where c is

FIG. 4. Calculated electronic parameters for
a-Cr1−xSix vs �B at 300 K and comparison with
experimental data ��� taken from Helms et al.
�Ref. 38� �cosputtered, squares�, Weser �Ref. 39�
�sputtered, triangles�, and Gladun et al. �Ref. 40�
�sputtered, rhombus�. c is a parameter character-
izing the electrostatic contribution to d� /dT,
which is varied: c=2.3 eV, 2.6 eV �solid line�,
2.9 eV and c=0 �dotted line�.
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used as a parameter with c=2.3, 2.6, and 2.9 eV and c=0. �,
1 / �e��d�i

0 /dT�, ��+�, and ��−� �the two solutions of Eq.
�35�� are drawn in Figs. 4�e�–4�h�. �For c=0, Eq. �35� does
not have a solution for 0.134��B�0.589; see Figs. 4�g� and
4�h�.� Additionally, in Fig. 4�e�, experimental � data of sput-
tered a-Cr1−xSix thin films are drawn taken from Helms et
al.,38 Weser,39 and Gladun et al.,40 where �B is calculated by
Eqs. �31� and �77�.

The ��−� curve of Fig. 4�g� for c=2.6 eV as well as �A

and �B of Fig. 4�d� is drawn once more in Fig. 5 vs x com-
monly with experimental data for � taken from Gladun et
al.,40 Weser,39 and Sonntag41 �sputtered from alloy targets�,
where Eq. �77� is used. The experimental � data are de-
scribed relatively well by the theoretical ��−� curve in Fig. 5
�excepting x�0.41 corresponding to �B�1/3� and even the
sign change of ��−� at x=0.48 �corresponding to �B=0.46�
and the drastic increase of ��x� with increasing x. This is
especially remarkable, although, for x�0.49, �B remains es-
sentially smaller than ��−� itself and �A is even negative in
the complete concentration range considered. Above the sign
change of ��−� there is a discontinuity in the ��x� curve, and
the question arises whether or not this discontinuity calcu-
lated can be confirmed experimentally by independent au-
thors. This discontinuity calculated does also occur if some
of the physical parameters applied are changed within the
scope of physically reasonable values.

We consider the relatively good correspondence between
the calculated and experimental � and � data, Figs. 5 and

4�e�, respectively, as support for the alternative concept of
papers I and II. Nevertheless, the calculations described are
to be considered as temporary example calculations because
of the simplifying approximations, where the most problem-
atic one is the assumption that the energies of the band edges
do not depend on temperature and that the electron redistri-
bution to other electronic bands �for instance, the d band in
alloys containing transition metals� does not change with
changing temperature. Moreover, for calculation of p, Eqs.
�72�–�81�, XB* /XB is only linearly interpolated between �B

=1/3 and �B,k, where specific features of the boundary faces
are not considered and the phase grains are assumed to be
spherical. By additional measurement of RH there would be
the possibility to determine p�x� independently. Such addi-
tional RH data also would enable an independent determina-
tion of n�x�, and Eq. �66� could be checked directly as well
as the validity of the physical model applied. In this context,
additional precise experimental data of xA , xB , NA , NB ,
DA , DB vs x—e.g., determined according to the examples of
Refs. 42–44—would be useful.

Above �B�0.80 �corresponding to x�0.72�, ��+�, ��−�,
and �1/ �e���d�i

0 /dT� are drawn only partially in Figs. 4 and 5
because there are considerable discontinuities and flucta-
tions. Notice that outside of the concentration range 1/3
��B�2/3 �corresponding to the condition �i�1/3� the as-
sumptions for the calculations become worse. Li /di��B� cal-
culated by Eqs. �82�–�84� as well as the equations for �i, �i,
��i

0 /�T, and ��i
0 /�ni applied, only have a physical content if

both �i�1/3 �spherical phase grains� and kF,iLi�c*, Eq. �1�.
The latter condition corresponds to �i��min,i �at T=0� with

�min,i =
c*2

6
	 e2

h

 1

di
�85�

following from Eq. �B3�, if Li=Li,min, Eq. �84�, is set �see
Appendix B�. For the phase B it follows from Eq. �85� with
dB=0.234 nm, �min,B=17 �−1 cm−1; for phase A such a con-
sideration is not necessary, because the first condition �i
�1/3 is violated for phase A, already, before �A becomes
small; see Fig. 4�c�. For phase B, the condition �B��min,B is
violated above �B=�B,c=0.97 corresponding to x=xc=0.87;
this is the concentration of the metal-insulator transition—
i.e., �B=0 for T=0 �see Sec. III C of paper II�. Because of
�B=0, �=0 �at T=0� as well, since �A�1/3 for �B��B,c
�see Sec. III A of paper II�. Although the consequences de-
scribed refer especially to the situation at T=0, they have
basic meaning, because Eqs. �45�–�47�, �52�, �53�, and �62�–
�64� applied are constraint basically to the metallic regime;
for T�0, transport contributions due to activation processes
of carriers are superimposed to the “metallic transport.” The
effect of these activation processes on the electronic trans-
port properties �not considered in the present paper� plays a
role also for �B��B,c, but it is larger for the larger �B. For
�i�1/3, tunnelling of electrons through the minor phase is
to be taken into account.

FIG. 5. Calculated thermopower for a-Cr1−xSix corresponding to
Figs. 4�d� and 4�g� with c=2.6 eV, but redrawn vs x, and a com-
parison with experimental data taken from Gladun et al. �Ref. 40�
�rhombus�, Weser �Ref. 39� �open triangles�, and Sonntag �Ref. 41�
�solid triangles�.
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V. SUMMARY

Applying EMT and the BTE, a formula is derived for
calculation of the Seebeck coefficient of composites,

�
i

�i
Zi − Z

Zi + 2Z
= 0, �86�

which can be transformed to

�
i

�i
zi − z

zi + 2z
= 0 �87�

if the phases are metallic phases or degenerated semicon-
ducting phases and if the scattering is elastic. The term
d�i

0 /dT in Zi, Z, zi, and z, defined by Eqs. �19�, �21�, �33�,
and �34�, depends also on the electrochemical potential �
and its change with temperature, d� /dT. d� /dT is essen-
tially determined by the electronic structure, the carrier den-
sities, and electron-electron-interaction in the phases.

Equations �86� and �87� can also be applied to composites
with strong scattering.

For metal-metal composites �with eA=eB� and metal-
insulator composites, Eq. �87� can be approximated by

�
i

�i
�i/�i − �/�

�i/�i + 2�/�
� 0 �88�

and

� � �A, �89�

respectively.
In Sec. III, Eq. �87� is applied for calculation of the con-

centration dependence ���B� for several special cases of
composites with the following simplistic assumptions: �a�
positions of the band edges are fixed on energy scala, �b�
sum of electrons in the considered bands is constant, �c� NFE
approximation, �d� spheric phase grains, �e� carrier densities
do not depend on concentration, and �f� neglect of the
electron-electron interaction.

In Sec. IV the concentration dependence ��x� is calcu-
lated for a-Cr1−xSix alloys, where both the concentration de-
pendence of the carrier densities and the electron-electron-
interaction are taken into account; i.e., assumptions �e� and
�f� are abolished. The NFE approximation �c� is kept, be-
cause it is a relatively good approximation for a-N1−xMx and
many27 a-T1−xMx alloys �for not too small �B� as justified in
Sec. IV B of paper II.

The equations for �i, �i, ��i
0 /�T, and ��i

0 /�ni, applied for
the calculations, only have a physical content if both �i
�1/3 �spherical phase grains� and kF,iLi�c*, Eq. �1�, corre-
sponding to �i��min,i, Eq. �85� �at T=0�. If the condition
�i�1/3 is not fulfilled, tunneling of the electrons through
the minor phase is to be taken into account. If Eq. �1� is not
fulfilled, metallic conductivity is absent.
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APPENDIX A: DERIVATION OF THE EMT EQUATION
FOR �

Equation �26� has the solution2


i = 
0 + raicos � �A1�

within the sphere i and


 = 
0 + �br + cr0
3/r2�cos � �A2�

within the effective medium. � is the angle between the di-
rection of E and the position vector r with �r�=r. ai, b, c, and

0 are constants. With

gradr
i = aicos � �A3�

following from Eq. �A1�, Eq. �25� can be written as

Z�ai� = �aiZi� . �A4�

With the boundary condition, Eq. �27�, it follows that

ai = b + c , �A5�

and with Eq. �29� and Eqs. �A1� and �A2� for r=r0,

Z�b − 2c� = Ziai. �A6�

Equations �A5� and �A6� resolved for ai providing

ai =
3bZ

Zi + 2Z
�A7�

and introduced in Eq. �A4� provide

Z
 1

Zi + 2Z
� = 
 Zi

Zi + 2Z
� �A8�

in correspondence with Eq. �30�.

APPENDIX B: MINIMUM METALLIC CONDUCTIVITY

Equation �85� follows from the BTE formula for �i,

�i =
SF,ie

2Li

6	2h
, �B1�

if SF,i, the Fermi surface related to the phase i, is replaced by

SF,i = 4	kF,i
2 �B2�

�spherical Fermi surface, �i�1/3� and kF,i by kF,i=c* /Li �the
lower boundary for kF,i, Eq. �1�� leading to
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�min,i =
2c*2

3	
	 e2

h

 1

Li
. �B3�

Li=Li,min, Eq. �84�, introduced in Eq. �B3�, provides Eq. �85�.
Justification for the assumption of spherical Fermi surfaces,
Eq. �B2�, follows from the fact that, for small �i �corre-
sponding to small n �or p��, kF,i is small and sufficiently
distant to the first Brillouin zone boundary in the phase i.

Unfortunately, in the original formula for the minimum
metallic conductivity derived in Sec. IV C of paper II there is
an error: in Eqs. �45� and �47� of paper II “c* /6” is to be
replaced by “2c*2 /3	;” i.e., Eqs. �45� and �47� of paper II
read in correct form

�min =
2c*2

3	
	 e2

h

 1

L
�B4�

and

�min �
2c*2

3	
	 e2

h

1

d
� 20 �−1 cm−1, �B5�

respectively. Equation �B5� follows from Eq. �B4� if L�d
�0.25 nm is set �see Sec. IV C of paper II�.
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