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Thermoelectric power in alloys with phase separation
(comment to Vaney et al., J. Mater. Chem. C 3, 11090 (2015))
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Vaney et al.1 have found that the thermopower formula for composites derived in Ref.2 clearly
fails to predict the thermopower of the man-made composites Si10As15Te75-Bi0.4Sb1.6Te3. Reason
for this mistake was the fact that the thermal conductivities, κi and κ, occurring in this formula
were interpreted as the total thermal conductivities. However, only the electronic contributions to
the thermal conductivities of the phases are to be taken into account. If this is considered, the
thermopower formula derived in Ref.2 is a good description for naturaly grown composites. For
man-made composites as considered in Ref.1, percolation elements should additonally be included
as proposed by Vaney et al.1

PACS numbers: 71.23.-k 71.55.Jv 72.10.Bg 72.15.-v

In a recently published paper Vaney et al.1 have tested
experimentally the thermopower formula2

∑

i

υi
κi/αi − κ/α

κi/αi + 2κ/α
= 0 (1)

by comparison with man-made composites,
Si10As15Te75-Bi0.4Sb1.6Te3. (αi and α are the See-
beck coefficients of the phase i and the composite,
respectively. κi and κ are the corresponding thermal
conductivities. υi is the volume fraction of the phase
i.) Eq.(1) was derived applying J and JS , the electrical
and entropy flux density, respectively, based on effec-
tive medium theory (EMT). Vaney et al. found that
Eq.(1) clearly fails to predict the thermopower (Seebeck
coefficient).

I agree with this valuation. This failure is caused by
the fact that in the original work, Ref.2, κ and κi had
been interpreted as the total thermal conductivities. This
is, however, only an approximation for composites with
phases for which the electrical condutivities are not too
small as studied in Ref.2. For the general case of a com-
posite the correct formula reads

∑

i

υi
κe,i/αi − κe/α

κe,i/αi + 2κe/α
= 0, (2)

where κe,i and κe are the electronic contribution to κi

and κ, respectively. The origin for the incorrect formula,
Eq.(1), comes from the fact that in JS [Eq.(1.17.1a) in
Ref.3] which was applied in Ref.2 for the derivation of
Eq.(1), κ occurs. However, only the electronic contribu-
tion to κ is to be taken into account. This corresponds
with the comment in Ref.3, after formula (1.17.1b) that
J and JS ”. . . apply equally well to one-band or to multi-
band models, depending on κ (or more accurately, κ′)
. . . ”; (κ′ ≡ κe). Hence, Eq.(1) is to be replaced by the
correct formula Eq.(2).

Considering both the Wiedemann-Franz rule and
the EMT formula for the electrical conductivity in

composites,4,5

∑

i

υi
σi − σ

σi + 2σ
= 0, (3)

Eq.(2) can be transformed to

∑

i

υi
σi/αi − σ/α

σi/αi + 2σ/α
≈ 0, (4)

where σi and σ are the electrical conductivities of the
phase i and the composite, respectively. Eq.(4) agrees
with the approximation formula Eq.(54) in Ref.6 derived
three years before Eq.(1) applying J and JQ. (JQ is the
heat current density).

Inserting the σi and αi data (given by Vaney et al.)
in Eq.(4), it follows the concentration dependence of α
on υ1 as drawn in Fig.1(a) named Eq.(4). For υ1 > 1/3
the calculated α on υ1 curve agree with the experimental
data. For υ1 < 1/3 the EMT formulae are no longer a
good description, because the phase grains in the man-
made composites as studied in Ref.1 are arranged ran-
domly (accidentally). Considering this effect, Vaney et
al.1 have introduced the parameters t and A taking into
account percolation elements. Considering this proposel,
Eq.(4) is to be modified to the generalized form (GEMT)

∑

i

υi
(σi/αi)

1/t
− (σ/α)

1/t

(σi/αi)
1/t

+ A · (σ/α)
1/t

≈ 0, (5)

where A is given by A = (1 − ϕc)/ϕc. ϕc is the vol-
ume fraction of the phase 1, where the actual percolation
threshould is assumed to occur. t represents the asym-
metry of the microstructure.1 Eq.(2) and Eq.(5) replace
the equations Eq.(5) and Eq.(6) in Ref.1, respectively.

In Fig.1(b), α versus υ1 is drawn calculated by Eq.(5)
for t = 2 and ϕc = 0.16 (as applied in Fig.7(A) of Ref.1)
as well as for t = 2 and ϕc = 0.10. As can be seen in
Fig.1(b), for the parameters t = 2 and ϕc = 0.10 there is
an excellent agreement with the experimental data.

Both in Ref.1 and in Fig.1, the values for αi and σi

were assumed to be independent of υi. This is, however,
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FIG. 1: α versus υ1, the volume fraction of the crystalline
phase, Bi0.4Sb1.6Te3, and comparison with the experimental
data (full points, T = 300K), (a), calculated by Eq.(1) and
Eq.(4), (b), calculated by the GEMT1 equation, Eq.(5), for
ϕc = 0.16 and ϕc = 0.10; t = 2 for both curves. For the
calculations the same values have been applied as given by
Vaney et al.1: σ1 = 40Ω−1cm−1 and α1 = 165µV/K for the
crystalline phase (Bi0.4Sb1.6Te3), σ2 = 29.5 · 10−6Ω−1cm−1

and α2 = 1400µV/K for the glassy phase (Si10As15Te75).

only an approximation, because the electrochemical po-
tential, µ, in the two phases is generally different, as long
as the phases are separated from each other. In the com-
posite, however, µ must be uniform. This is sured by an
electron transfer δn between the phases. The tempera-
ture dependent part of δn leads to a change of dµ/dT
as described by Eqs.(39),(40) in Ref.6. This provides an

additional contribution to the thermopower, ∆α = 1
|e|

dµ
dT

(Ref.2, section 3. therein). |e| and T are the elementary
charge and the temperature, respectively. For a calcula-
tion of dµ/dT , knowledge of the band structure data of

the phases is necessary. For the composite considered by
Vaney et al.1, the contribution of dµ/dT to α is surely
small, because α1 and α2 have the same sign. However,
for composites with different signs of α1 and α2, the effect
of dµ/dT can be essentially larger. That is, a really sen-
sitive hardness test of Eq.(4), respectively Eq.(5), would
be a composite with α1 > 0 and α2 < 0 or vice versa.

Another specific feature of composites with α1 > 0
and α2 < 0 or vice versa is the fact that a discontinu-
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FIG. 2: Thermopower versus x for a−Cr1−xSix at T = 300K
calculated by Eq.(4) with xA = 0.25 and xB = 0.90 (bold
line) and xA = 0.25 and xB = 1.00 (dotted line) and compar-
ison with experimental data. Details of the calculations and
experimental data are described in Ref.6, section IVB therein.

ity (step) in the calculated α vs. υi can occur, which
is an additional possibility to check experimentally the
thermopower formula.

INSERTION-2-start

This discontinuity has its origin in the mathematic
structure of the formula

α(±) =
4 · κe

κe,1

α1

(3υ1 − 1) +
κe,2

α2

(3υ2 − 1) ±
√

( κe,1

α1

(3υ1 − 1) +
κe,2

α2

(3υ2 − 1)
)2

+8
κe,1·κe,2

α1·α2

(6)

following from Eq.(2) for two-phase composites, where υ2 = 1 − υ1. Eq.(6) has two solutions, α(−) and α(+),
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which both show a discontinuity (step) at the same con-
centration, when α(−) and α(+) passes the value ”0”
coming from negative values crossing to positive values or
vice versa. The physics follows only one of them, α(−),
as suggested by the results of Ref.6 (compare Fig.4(g)
and Fig.4(h) with Fig.5 therein).

As this discontinuity occurs at α = 0, this phenomenon
opens the possibility to produce reference standards for
absolute thermopower α = 0 also for temperatures be-
yond Tc (Tc stands for the transition temperature of any
superconductor).

INSERTION-2-end

One example for a composite with different signs of α1

and α2 is a−Cr1−xSix consisting of the two amorphous
phases7 a−Cr1−xA

SixA
and a−Cr1−xB

SixB
. (Amor-

phous phase separation is typical for many amorphous
transition-metal–metalloid alloys.8–12) In Ref.2 α versus
x had been calculated for a−Cr1−xSix applying Eq.(1).

Now, the calculations of Ref.2 we have done once more,
but with Eq.(4). The result is shown in Fig.2. Both the
discontinuity (step) at x = 0.49 and the general trend of
the calculated curves agree with the ones in Fig.1 and
Fig.2 of Ref.2. This correspondence is to be expected,
because for a−Cr1−xSix the difference between κe,i and
κi is relatively small.

For man-made composites as considered in Ref.1, per-
colation elements play an essential role (GEMT), be-
cause the phase grains are arranged randomly (acciden-
tally). On the contrary, for naturaly grown composites
as a−Cr1−xSix thin films, the EMT is rather a good de-
scription as justified in Ref.7 (section IVA therein).

INSERTION-1-start

Eq.(4) is a relatively good approximation for Eq.(2)
even if the Lorenz numbers of the phases, Li, defined by

Li =
κe,i

σi · T
, (7)

(T - temperature) are very different: For a comparison
let us assume that L1 = 1.6 · 10−8 (V/K)2 and L2 =
2.44 · 10−8 (V/K)2. Substituting κe,i in Eq.(2) by Eq.(7)
we get

∑

i

υi
σi · Li/αi − κe/α

σi · Li/αi + 2κe/α
= 0. (8)

κe necessary for calculation of α by Eq.(8), can be calcu-
lated by4

∑

i

υi
κe,i − κe

κe,i + 2κe
=

∑

i

υi
σi · Li − κe

σi · Li + 2κe
= 0. (9)

Inserting the σi and αi data and the assumed values for
Li in Eq.(8) and Eq.(9), it follows that the two α versus
υ1 curves calculated by Eq.(8),Eq.(9) on the one hand
and Eq.(4),Eq.(3) on the other hand, cannot be distin-
guished in Fig.1(a); they practically agree. This result
seems to be surprising. Reason for this conformity is the
fact that σ1 >> σ2. The situation is another one, if σ2
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FIG. 3: Comparison of the α versus υ1 curves calculated by
Eq.(2) (bold curves) and the approximation solution Eq.(4)
(dotted curves) for different quotients σ2/σ1 for the case that
L1 6= L2 (assumed values: L1 = 1.6 · 10−8V 2/K2 and L2 =
2.44 · 10−8V 2/K2. The values for σ1, α1 and α2 are the same
as given in Fig.1)

would be of the same order as σ1. Fig.3 shows the situa-
tion for two hypothetical composites with σ2 = σ1 = 40
Ω−1cm−1 and σ2 = 0.01 · σ1, where the values of σ1, α1

and α2 are maintained.
INSERTION-1-end

Allthough Eq.(1) has been applied in Ref.13, the con-
clusions drawn in this paper are unchanged, because only
metallic composites were considered with κi ≈ κe,i.
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